The accuracy and reliability of a novel handheld dynamic indentation probe for analysing articular cartilage.
نویسندگان
چکیده
This study investigates the accuracy and reliability of a novel handheld indentation system designed to ascertain the dynamic biomechanical properties of articular cartilage. A series of standard elastomers were assessed with both the handheld indentation system and a bench-top dynamic indentation system to assess the accuracy of the instrument. Interoperator and intraoperator experiments were undertaken to investigate the reliability of the system when used by an individual operator and by five different operators. Intraclass coefficients (Rho) were derived using a random effects model. The system was then used to ascertain the topographical variation in the shear moduli and phase lag of articular cartilage across normal ovine tibial plateaux. The system was shown to be highly accurate (R2 = 0.97), and had excellent reliability when measuring the dynamic shear modulus of articular cartilage (interoperator Rho = 0.75, intraoperator Rho = 0.79). Measurement of static shear modulus was less reliable (interoperator Rho = 0.15, intraoperator Rho = 0.52), but may be improved by monitoring the load applied to the instrument by the operator. The instrument was used to differentiate between different regions of cartilage and generated a topographical map of an ovine tibial plateau. The cartilage located beneath the menisci was 200-500% stiffer than the cartilage that was not covered by the menisci, while the phase lag was almost constant (10+/-2 SD) over the entire tibial plateau. The system was shown to be an accurate and reliable tool for rapidly assessing the dynamic biomechanical properties of articular cartilage, while being small enough to be used arthroscopically.
منابع مشابه
Arthroscopic evaluation of cartilage degeneration using indentation testing--influence of indenter geometry.
BACKGROUND It has been suggested that the early onset of cartilage degeneration might be detected with a handheld indentation probe during knee arthroscopy, prior to any visible change on the articular surface. Collagen degradation has been considered as the first sign of cartilage degeneration. Therefore, it is important to consider the collagen network as a distinct constituent in the study o...
متن کاملPoroelasticity of cartilage at the nanoscale.
Atomic-force-microscopy-based oscillatory loading was used in conjunction with finite element modeling to quantify and predict the frequency-dependent mechanical properties of the superficial zone of young bovine articular cartilage at deformation amplitudes, δ, of ~15 nm; i.e., at macromolecular length scales. Using a spherical probe tip (R ~ 12.5 μm), the magnitude of the dynamic complex inde...
متن کاملElectromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials
PURPOSE To assess the electromechanical properties of human knee articular cartilage with compression-induced streaming potentials for reliability among users and correlation with macroscopic and histological evaluation tools and sulfated glycosaminoglycan (sGAG) content. METHODS Streaming potentials are induced in cartilage in response to loading when mobile positive ions in the interstitial...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملComparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration.
In order efficiently to target therapies intending to stop or reverse degenerative processes of articular cartilage, it would be crucial to diagnose osteoarthritis (OA) earlier and more sensitively than is possible with the existing clinical methods. Unfortunately, current clinical methods for OA diagnostics are insensitive for detecting the early degenerative changes, e.g., arising from collag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2001